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A BS T RA C T

T o n e-m a p p in g is a c o m p le x p ro ce s s fo r

d is p la yin g H D R p ict ures o n s t a nd ard d is p la ys .

T he re are s e ve ra l w a ys t o to ne -m a p p ic tu re s ,

th u s it's im p o rt an t to c o m e up w it h a fa ir q u a lity

m e as u re t o ch o o s e th e b es t to ne -m a p p in g

o p e ra to r (TM O ) a n d a d ju s t it s p a ra m et ers to g e t

th e g re at es t rep ro d u ct io n q u ality . Th is is a n o v el

w a y t o o b jec tiv ely a s s e s s to ne -m a p p e d p ho to s

o f rea l-life s ett ing s . I t co m b ine s p erc ep t u ally

m e an in g fu l fe a tu re s p ick e d u s in g an a c cep ta b le

te ch n iq u e. A d d itio n a lly , t he s elec tio n hig h lig h ts

th e s ig n ific a nc e o f p ercep tu a l fa cto rs in

ev a lua t in g t o n e-m a p p ed H D R vid e o . A n u m b e r o f

s ta t e-o f-t h e-a rt cr it er ia a n d th re e p u b lic ly

a va ila b le d a ta s et s are u s ed t o as s e s s th e

fea tu re co m b ina t io n. A d iffe re nt g o a l is

s u g g e s ted to o p t im is e t he p ic tu re q u a lit y. T h e

fo u n d a tio n o f t his s t ra te g y is th e D L -C N N fus io n

o f m a n y p erce p tu a lly s ig nifica n t ch a ra c ter is tics

th a t h a ve b ee n m e ticu lo u s ly ch o s e n u tilizin g

a d eq ua t e h ig h- le ve l fe at u res .

I. IN T RO DU C T IO N

T ech n o lo g y an d im a g in g e q u ip m en t m a k e

b illio ns o f d ig it al p h o t o s d a ily . Lig h t s o u rce,

w ea th e r, o r im a g in g in s trum en t m a lfu nc tio n

m ig h t a ffect im a g e co n t ra s t a nd t o n e. Im ag e

im p ro ve m en t in v o lve s to n e m a p p in g . T h e

co nv en t io na l d ig it a l ca m era s C C D o r C M O S

a rray ca tc he s p h o to ns g o ing th ro u g h t he len s

a n d co nv erts t h em in to a p ictu re. R a w p h o t o s

are to o lo n g fo r m o s t m o nit o rs .



R ec en t im ag e a n d v id eo

p ro ce s s in g a d v an c es aim t o w a rd s

re a lis m an d im m ers io n . T h is is

re fle ct ed in n ew t ec hn o lo g ie s lik e U H D ,

3 D T V , H F R , a n d H D R , a n d s t a nd ard is

a ct io n effo rts . A ll a d v an c em e nt s d efy

q u a lit y ev a lua t io n. H D R im a g in g ca p t ures

a n d rep ro d u c es rea l-w o rld b rig h tn es s

v alu es . Un d e r rea l-w o rld s itu a tio n s , th e

d yn a m ic ra ng e (D R ) s e en b y t he h um an

ey e is o ne h u n d re d tim e s g rea te r t h an

th a t d is p la ye d o n a s ta n d a rd m o nit o r. T o

re p lica te a n e ve n t, m in im iz e DR . T o n e

M a p p in g O u tlin es (TM O s ) d e lin e at e th e

m e th o d o lo g y fo r to n e m a p p in g . T h e

u tiliza tio n o f T M O s e n ha n ce s p ict ure

q u a lit y. C o m p a rin g TM O p erfo rm a n ce is

s u b je ct iv e. S u m m a ry: M o s t o p e ra to rs '

p a ra m e te rs a ffect th e fin a l res u lt.

M a n u ally s elec tin g th e TM O an d its

p a ra m e te rs is p ro b le m a tic in m o s t c as e s .

T ru s tw o rth y, o b je ctiv e q u a lity

a s s es s m e n t in s id e a n d b et w een TM O s

(fo r p a ram ete r s e ttin g ) is ne ce s s ary.

F u ll-referen ce m ea s u rem en ts ca n no t b e

u tilis ed to c o m p a re th e referen ce a n d

d is to rte d im ag es b ec a us e t o th e

d iffere n ce in D R . O b jec tiv e d at a fa ile d to

p red ict h um an p referen ce s fo r

to ne -m a p p e d n at u ra l im a g e ry. Th is s tu d y

s u g g e s ts a co nt en t cr it er io n. W e

m o d elled t he c rite rio n a fter C a d k et a l.

N o w a d a y ’ s s a te llit e im ag es

a n d vid e o s a re ve ry im p o rta n t to b e

p ro ce s s ed w it h b e tte r q u a lit y a n d

re s o lu tio n . B ut in p re s en t s it u at io n s w e

a re fa cin g m a n y p ro b lem s in p ro vid in g

s u ch im a g es . S o it ca n b e



re s o lve d b y us in g fo llo w in g m e th o d s .

Image enhancement: It is th e p ro c ed u re o f

a d a p t th e d ig ita l im a g e s to re nd er th em m o re

a p p ro p ria te fo r p re s en ta t io n o r fu rth er a n a lys is .

Adaptive Histogram Equalization: It is an

a ltern at ive h is t o g ram eq u a liza tio n C o n t ra s t

lim ited m e th o d .

Image segmentation: It d es c rib es t he s te p s

u s e d to s p lit a p ic tu re in t o its co m p o n e n t

e le m e n ts .

Image fusion: It is co n s id ered to im p ro ve s t he

d et ails a n d ed g es o f th e sc en e.

E n v iro n m en t im a g es b ec o m e ha z y o w in g

to lo w v is ib ility , ho w e ve r typ ic al im a g e

p ro ce s s in g m a k es u s e o f s e ve ra l e n ha n cin g

m e th o d s w he n t ak e n in t h e air . H a v ing a va rie ty

o f effect s , s u ch a s lig h t a b s o rp tio n , reflect io n ,

a m b ien t n o is e (air , fo g , ra in ), lig h t s ca t ter ing ,

ca m e ra p ro jec tio n , an d s o o n . T h erefo re , in o u r

s ta n d a rd iz a tio n effo rt s an d w ith s ys te m s th a t

h a ve U ltra H ig h D e fin itio n (U H D ), 3 D -T V , H ig h

F ra m e R a t e (H FR ), o r H ig h Dy na m ic R a n g e (H D R ),

w e w a n t to p ro v id e v iew ers a n im m ers iv e a n d

re a lis t ic im a g ery ex p erien ce . A ccu rat e

re p ro d u ctio n o f th e s ce ne 's tru e lu m in a nc e

v alu es o n th e fin a l d e vic e is th e p rim a ry

o b jec tive o f H DR im a g in g . C o m m o n d is p lay s , o n

th e o th er ha n d , h av e a d yn a m ic ra ng e th a t is

a ro u n d a 1 0 0 tim es les s th a n t he D R o f an

a ve ra g e rea l-w o rld s ce n e as s ee n b y t h e h um an

ey e. It is es s en t ia l t o red u ce th e s ce n e's D R in

o rd er to re cre a te it. O u r to n e-m a p p in g o p era t o rs

(TM O s ) a re t he k ey to d o ing t h is .

Th e fin al p ict ure q u a lit y is a ffe ct ed

d iffere n tly b y v a rio u s T M O s . M o s t o p era t o rs

a llo w yo u ch a n g e t he s c en a rio u s ing a s et o f

p a ra m e te rs , w h ich h a s a h u g e effect o n th e

o u tc o m e . In m o s t rea l-life s itu a tio n s , it 's eit he r

im p o s s ib le o r ve ry h a rd to c h o o s e t he rig h t TM O

a n d it s s ett ing s b y ha n d . T h e crit er io n c o m p ris e d

s ev era l fa ct o rs t h at a re c ru cia l to h o w

in d ivid u a ls s ee t hin g s . It is u s ua l p ra ct ic e to

p ro p o s e m a n y es t im at o rs a n d th en in t eg rat e

th e m u s in g a m a ch in e le a rn ing te ch n iq u e in

o rd er t o o b t ain fea tu re-b a s e d o b je ct iv e q u a lity

m e as u res .

I t is p o s s ib le to crea te o b ject ive q u a lit y m e as u res

b a s ed o n fe a tu re s b y c o m b in ing e s tim a to rs w ith M L. T w o

p ro b lem s o cc u r w ith th is e ffic ie nt a p p ro a ch . To b e g in , it

p ro vid e s no as s u ran c e th a t t he s elec te d es tim a t o rs a re

o p t im a l o r co m p lim en ta ry . Fu rth er , t he re la t iv e w o rth o f

es t im a to rs is yet un k n o w n , a n d re tra in ing is re q u ired fo r

d iffere n t circu m s ta n ce s w h en u tilizin g a c o m b in a tio n

b a s ed o n m a c hin e le arn in g . . D ue to p ro b lem s , w e a d o p te d

a d ifferen t m et h o d . W e o ffer fea t ure s elec tio n o n a v as t

co lle ctio n o f n ew a n d cu rren t e s tim a to rs to e ns u re th e ir

o p t im a l u s e. H ere it a llo w s a lin ea r c o m b in a tio n , w h ich is

tra ns p aren t an d les s p ro n e to o v er fit tin g . Th e p a ra m e ters

a re fix ed in a d a ta b a s e . Differen t d a ta s e ts co n firm t his .

II. L IT E RA T U RE S U RV EY

A. Objective Tone-Mapped Image Metrics

Dy na m ic R a n g e In d ep en d en t M e tric (D R IM ) w a s th e

in itia l o b jec tiv e m et ric d ev elo p e d fo r t h e p urp o s e o f

ev alu a tin g to n e -m a p p e d p ho to g ra p h s . W h en

co m p aring t h e to n e -m a p p e d p ic tu re to th e H D R

o rig in a l, it f ind s th e s p o t s w h ere t h e co n tra s t is

eith er lo s t, b o o s te d , o r tu rn ed a ro u n d u s in g a m o d el

o f t h e H V S .

Tw o ne w fu ll- refe ren c e m ea s u rem en ts fo r co n tra s t

lo s s a nd co n t ra s t w a s te w ere p res e nt ed b y

G ran a d o s et a l. Th e y a re b a s ed o n th e co n c ep t o f

H V S a n d c a m era n o is e es tim a t e. In o u r ea rlie r w o rk

a s im p le m e a s ure o f co n tra s t rev ers a l a lo n g w ith a

no ve l m o d el o f n a tu ra ln es s fo r TM O s p a ra m e te rs

o p tim iz a tio n . T h e c o n tras t re ve rs a l s h o w s h o w

m u ch t he g ra d ien t d ire ctio n ch a ng es b etw e en t h e

H DR a n d t o n e-m a p p ed ve rs io n s . Th e n a tu ra ln es s

s ho w s ho w p ro b a b le th e c o m b in a tio n o f b rig h tn es s ,

co n tra s t, a n d c o lo rfu ln es s in th e to ne -m a p p e d

im ag e is t o m a k e a p ictu re s ee m na t ura l.

In 2 0 1 8 t he au t ho rs H a d iza d e h a n d B a ji'c

d is cu s s "F u ll- re fe re nc e o b je ct iv e q u a lit y

a s s es s m e n t o f to ne - m a p p ed im a g e s ". Th is w o rk

p res en t s a n in no va tiv e w a y fo r ev a lua t in g t h e

q u a lit y o f t o n e-m a p p ed p ict ures s h o w n o n

co nv en t io na l L DR s creen s . O n e p ro b lem w it h th is

s tu d y is th a t th ere is n 't en o u g h co n tra s t. Lo w

d yn a m ic ra n g e im a g es h av e les s in t en s ity lev els

i.e ,8 ,1 6 s o im a g e q u a lit y w ill b e le s s co m p ared t o

H ig h d yn a m ic ra n g e o f im a g e s .

D. K u n d u , D . G h a d iya ra m , A . C . B o v ik , a nd B .

L. E v an s , " N o -re fere n ce q u a lit y a s s es s m en t o f

to ne -m a p p e d H D R p ictu res ,". Th is p a p e r d es c rib e

a b o u t t he SD R p ict ures h a ve 8 b its o f co lo r an d 8

b its o f p ixe l. H D R p h o t o s , th a t a re freq u en t ly



m ad e w ith m u lt ip le e xp o s u res o f t he

s a m e s u b je ct , m ay s h o w 1 6 o r 3 2

b it s /co lo r/p ixe l, b u t th ey ne ed to b e to ne

m ap p ed to SD R b efo re t h ey ca n b e s e en

o n re g u lar d is p lay s . Th is p a p er 's

s h o rtc o m in g is t h at it ca n n o t p ro v id e a n

a p p ro p riat e a s s es s m e nt o f p ic tu re

q ua lity a n d fa ils to id e nt ify o b ject s

c o rrec tly.

III. DISCERET WAVELET TRANSFORM

Wavelets Method: S im ilar ly , w a ve let c h an g e .

R ep ea te d (S h o rt -tim e Fo urier c ha n g e , W ig ne r

d is p e rs io n s , e tc. p ro v id e s im ilar d a ta .) An y g h o s t

ca n b e fas c ina t in g . K no w in g w he n t he s e

ex tra terre s tria l p a rt s o cc u r c an b e b en e fic ia l.

E E G id le n es s is co n v inc ing . W a ve le t ch a n g e

crea te s a p e rio d - re cu rren ce im a g e us in g t im e

a n d re cu rren ce d a ta . S ca lin g a n d w a ve le t

ch a n n els a re u s ed in D W T. P ro g re s s iv e hig h

p a s s an d lo w p a s s s iftin g yield s re cu rren t

g ro u p ing s . Th e x[ n] ch a nn e l is u s ed u s in g a

h a lf-b an d h ig h-p a s s a n d lo w -p a s s co n fig u ra tio n .

S in c e th e im a g e h a s a rec urre nc e o f /2 ra d ia n s ,

h a lf o f th e in s ta n ce s c a n b e d ele ted a fte r s iftin g .

R em o vin g o n e s a m p le s u b s a m p le s t h e im a g e

b y 2 . O n e d eg ra d a tio n lev el is :

yhigh[k] = ∑ x[n]. g[2k-n] .… .(1)

ylow[k] = ∑ x[n]. g[2k-n] … … (2)
w h ere y hig h [k ] a nd y lo w [k ] a re ch a n ne l yield s a fte r

s u b s a m p lin g b y 2 .

H a lf-b a nd ch a n ne ls s tru ctu re o rth o n o rm a l b a s es ,

m a k in g recrea tio n ea s y. B a ck w a rd re cre a tin g

fo llo w s th e ab o ve p ro ced ure. Th e im a g e s a t e a ch

lev el a re u p s a m p led b y tw o , t he n p a s s ed t hro u g h

g '[ n] a n d h '[n ] (h ig h a n d lo w p as s e s , s e p a ra te ly ).

A m et h o d to d eco m p o s e t h e d is cret e tim e s ig na ls

w a s p re s en te d b y C ro is er , E s te n b a n, a n d G a la n d in

1 9 7 6 , w h ich la y th e g ro u n d w o rk fo r th e D is cret e

w a ve le t tra ns fo rm . C o d in g s p ee ch s ig n als w a s t h e

s u b je ct o f c o m p a ra b le w o rk b y C ro c hie re, W e b er , a n d

F lan a g a n th a t s a m e yea r. Su b b a n d c o d in g w as t h e

te rm th ey g av e to t he ir m e th o d o f an a lys is . B u rt

in tro d u ced a m e th o d t ha t w a s co n c ep t ua lly

co m p a ra b le to s u b b an d co d in g in 1 9 8 3 ; h e c alled it

p yra m id a l co d in g an d it is n o w k n o w n a s

m u ltire s o lu tio n a na lys is . A fte r 1 9 8 9 , V et ter li a n d L e

G all e lim in a te d red un d a n t co d e in th e p yra m id a l

co d in g s ys te m a nd im p ro v ed th e s u b b a n d c o d in g tec h niq u e .

Dis c ret e w a ve le t tran s fo rm a tio n s an d m u ltire s o lu tio n

an a lys is a re to p ic s th a t h a ve b e en th o ro ug hly d is cu s s ed in

p re vio u s w o rk s ; s o , t his s t u d y w ill refra in fro m d o in g s o .



P re-p ro c es s in g th e im a g e in v o lve s im ag e

n o rm aliz at io n , im a g e e nh a n ce m en t, co lo r im ag e

p ro ce s s in g . In t he DW T s t ep , w e p erfo rm s o m e

o p e ra tio n s lik e R G B t o G ra y an d ap p ly s o m e

tra ns fo rm s lik e H a a r, D B 4 , DB 7 , D B 5 , B io rth o g o na l

tra ns fo rm a tio n s etc . In th is alg o rith m w e a re u s in g

H a a r T ra n s fo rm . T h e d e ta iled an a lys is a n d

ex p la n at io n o f th e H a a r t ra n s fo rm c an b e fo un d in

s ev era l a rt ic les t ha t a re a va ilab le o n th e in tern et a n d

it is b eyo n d th e s c o p e o f t his p a p e r.T h e D W T ca n b e

p e rfo rm ed in m u lti-lev els . T he ha a r t ra n s fo rm is

a p p lied o n th e im a g e in e ac h run o r ev ery le ve l o f

D W T . T h e d im e n s io ns o f t h e a rray a re g iv en a s

p o w e rs o f t w o . T h e a rra ys a re m a t he m a tica lly

in it ializ ed w ith a p o w er o f tw o rep res e nt ing t h e

a d ju s t ed ac tu a l im a g e res o lu t io n. Th e H a a r

tra ns fo rm s ep ara tes th e im a g e int o its h ig h - a n d

lo w -fre q u en cy c o m p o n e nt s .

In t h e firs t ite ra tio n , th e R O W is us e d t o

p e rfo rm t h e tran s fo rm a tio n p ro c es s .

A : O rig in a l Im a g e

B : F irs t R u n alo n g R o w

C : F irs t R un a lo n g Co lu m n

Th e d e ta ils c o effic ien t s a n d

c o n ve rte d d a ta are s to red in s ep a rat e

s e ctio n s o f th e p ict ure a rra y. T h e

h ig h -p a s s filter g e ne ra te s th e d et a il

c o effic ien ts w hile th e lo w -p a s s filte r

o ffers th e ch a n g ed d at a c o effic ien t s . Th e

p ic tu re is m o d ified a lo n g t he co lu m n

a fte r th e ro w t ra n s fo rm a t io n. T h e

t ech n iq u e is re p ea t ed un t il th ere are

t hree it era t io ns .

L L H L

LH H H

O rig ina l



Figure 1: F lo w c a rt o f DW T

F ro m th e fig u re 1 in p u t im a g e is S a tellite

o r m ed ic a l im a g e . P rep ro ce s s in g no rm a lize th is

im a g e. N o rm a lizin g p ixe l in te ns it ie s . M id d le-

filt ered im a g e. W ill a llo w lo w a n d h ig h p a s s filt ers .

U n lik e lin ea r filt ers , th e m e d ian filt er red u ce s in p u t

n o is e. T his im a g e is s e g m en t ed . A DW T

d e co m p o s es a s ig n a l int o t im e-fre q u en cy

co effic ien ts . Un lik e F o u rie r T ra n s fo rm , DW T

ca p t u res freq u e nc y a n d p o s itio n (lo ca tio n in tim e ).

ID W T rea s s em b le s p ic tu re s an d p ro d u c es o u tp u t.

IV. FEATURES FUSION FOR TONE – MAPPING

S E LE CT IO N O F F E A TU R E S R E LE V A N T T O T O N E

M AP P E D IM A G E S

C o lo r , d et ail, a n d a rtifac t. C o n tra s t is a ffec ted b y

lig h tn e s s , c h ro m a , a nd s h arp n es s . F u s io n m e tric s

s h o u ld b e p e rc ep t ua l.S eq u e nt ial fo rw ard s e lect io n

c o m b in es few fe at u res w h ile reta in ing

p erfo rm a n ce. A s w ith o th e r s eq ue n tia l a p p ro a ch es ,

lo c a l m in im a l lik eliho o d is s en s itive t o in itia l

c o n d itio n s . W e s u g g e s t u tilizin g a m o d ifie d L a s

V eg a s alg o rith m to un d e rs t an d co m b in at io n

b eh a vio u r. T his he lp s id e nt ify a m o re cred ib le

s t a rtin g s u b g ro u p . . .

A. Modified Las Vegas Algorithm

N ex t a re alg o rith m ic s t ep s . S u b s et s :

Inc lud es 6 0 In d e p en d e n t fea tu re s . S in c e th e s u b s e t

s h o u ld b e lim it ed a n d c o n ta in ju s t th e o p t im um

fe at u re es t im a to rs , s ub s ets w ith t w o s e p a ra te

m etr ics co m p u t in g th e s a m e c h ara cte ris tic m ay b e

e lim in a te d . R a nd o m ly s elec tin g c rite rio n g ro up s

fo rm s e ve ry La s V eg as s u b s et . E a ch g ro u p ha d ch o ice s .

S o m e o rg a niz a tio n s p erm itte d o n ly o ne c rite rio n , s o m e

a llo w ed ran d o m s ele ctio n o f m et rics , w hile s o m e

in s is ted u tiliz ing a ll.

S at ellite

Normaliza

D

ID

OUT



.

G ro u p 1 : Firs t c at eg o ry: c o m p a rin g

H D R an d t o n e-m ap p ed ve rs io n s u s in g

full-referen ce a p p ro a ch es . t h es e

es t im at o rs : T M Q I , T M Q I-II, D R IM a ,

D R IM l, a n d D R IM r fo r c o n tras t lo s s a n d

D R IM r fo r c o n tra s t re ve rs a l. S inc e n o

tw o p e o p le in S u b s et 1 a s s e s s th e

s a m e p erce p tu a l fe at u re, th eir

s elec tio n w as e nt irely a t ran d o m .

G ro u p 2 : C h a ra ct er is t ics o f F S ITM r,

F SIT M g , an d F S ITM b . Th is g ro up

em p lo yed all t hree m e as u res s in ce

a s s es s in g fea tu re s im ila r it y in o n e o r

tw o ch a n n els w a s n o t v ery he lp ful.

G ro u p 3 : Co nt ra s ts G C F , W eb e r,

M ich els o n , SD M E , a n d R M S. C h o o s e

o n e fea tu re .

G ro u p 4 : C o lo r le s s n es s . C o lo r

es t im at o rs C IQ I, C Q E 1 a nd C Q E 2 w ere

u s ed (i. e. m ea n o f t he S ch a nn e l in

H SV co lo r s p a ce ). A g a in, o n ly o ne

co u ld h a ve b een in clu d ed .

G ro u p 5 : S ha rp n es s /b lu r e s tim a to rs .

V a ria n ce , F re q u en cy T h res h o ld ,

G ra d ien t, La p la cia n, A u to c o rrela tio n

m et ric , H is t o g ra m F re q u en cy, K u rto s is ,

M a rz ilia n o , H P , K urto s is o f W av ele t

C o effic ien ts , R iem a n n ia n T en s o r,

J N B M , C P B D , S 1 , S 2 , S 3 w it h im p ro ve d

p o o lin g (S3 I II) , F IS H , a n d F IS H b b .

G ro u p 6 : Ae s th et ics -fo c us e d . C lar ity,

d ep th , to ne . R a n d o m s u b s et s elec tio n

w as fea s ib le.

G ro u p 7 : Sa lien cy m o d el res u lts .

D eta ils h ig h lig h t m o re lo c a tio n s . T h e

s co res w ere ca lcu lat ed b y a v era g in g

th e s a lie nc y m a p s , a s s um in g m o re

s a lie nt lo c at io n s re s u lt in a h ig he r

a ve ra g e. In clu d ed m o d els w ere

F req ue n cy- tu n ed s a lien cy ,

G ra p h -b a s ed , It ti-K o ch , a n d S UN . E a ch

s u b g ro up p ic k ed o n e .

G ro u p 8 : O t h er e s tim a to rs N IQ E , C S ,

Q A C , B IQ I , B R ISQ U E , B LIIN DS -II ,

C urve let-b a s ed m et ric , s ta tis tic al

n at u ra lne s s fro m TM Q I a n d TM Q III ,

fea tu re n a tu ra ln es s , m ea n in ten s ity ,

p ro p o rt io n o f u n d e r a n d o ve re xp o s ed

a rea s , JP E G 2 0 0 0 m e tr ic , a n d J P E G

m et ric. An y s e lect io n co u ld in clu d e

t h es e m e a s ures .



V. DEEP LEARNING CONVOLUTION NEURAL

NETWORK

Im a g e co n tra s t en h a nc em e n t im p ro ve s

v is ib ility. H e re , a fu n ct io n m o d ifie s p ixe l g rey lev el

in ten s ity . In ten s ity - b a s ed a p p ro a ch es in clu d e:

Io(x ,y )= f(I(x,y)) (1 )

Im a g e s o u rce (x ,y). Im a g e Io is o u tp ut (x ,y).

In te n s it y- b a s ed m et h o d s a ffec t g rey lev els . E ve n

a fter t ra n s fo rm a t io n, g re y p ix els rem ain . C o n tra s t

s tret ch ing is in c lu d e d . F ig ure 2 d is p la ys th e

u n d erw a t er p ict ure im p ro ve m en t m et ho d u tilis ing

D LC N N -M E F (I(x, y)).

Figure 2:A b lo ck d ia g ra m illus t ra tin g th e

p ro p o s e d DL C N N 's s tep -b y-s t ep e xe cu tio n

u s ing M E F

:

Step 1: Lig h tin g -c o rru p te d p h o to s im p a ir s ce n e

v is ib ility. D eh a zin g d eg rad ed im a g e s is

im p o s s ib le . T h e tec h niq u e u s es t w o d e g ra d e d

im a g e in p u ts t o re s to re co lo r a n d vis ib ility. Co lo r

co rre ct io n fo llo w s fus in g . Th e s u g g es te d

te ch n iq u e d eg ra d es o n e in p u t in to t w o . F irs t,

w h it e-b ala n ce inp ut . Im a g e ca s t s are rem o ve d .

R ed v is ua l c h an n el w ea k en s u n d e rw a ter. I2

im p ro ve s lo w - co nt ra s t a rea s . T h e

m e d ian -filte red in p u t im a g e is c o n tra s t -s tretc h ed .

I1 re m o v es co lo r ca s t s w h ile I2 b o o s ts c o n tras t .

W eig h t m a p s d e term in e th es e in p u t s ' im p o rta n t

p ro p erties . W e ig h t m ap s inc lud e e xp o s u re,

s a lie n cy, La p la cia n, a nd co lo r c as t . .

Step 2: A p p ly La p la cia n p y ra m id g a m m a

co rre ct io n. W e ig ht m a p s im p a ct fu s io n .

N o n -n eg at ive w e ig ht m a p s a re b e s t. Im ag e

w eig h ts a re in p u t . P ic tu re d e ta ils . T o c rea t e a n

im p ro ve d im a g e , fin e ch a ra c ter is tics fro m ea ch

im a g e m u s t b e int eg ra ted . W eig h t m a p s rev ea l

d e ta ils . W eig h tm ap s im p ro ve d un d e rw a te r

p h o t o g ra p h s . W eig h t m a p s inc lud e La p la cia n,

s a lie n cy, co lo r c as t , a n d ex p o s ed ne s s .

H ig h -v is ib ility reg io ns ha v e h ig h er v a lue s t ha n

o t he rs . I t e m p h a s is e s ed g es a n d te xt u res . B et te r

is ed g e-p res e rv in g L ap la c ia n . L ap la c ia n

h ig h lig h t s in te ns it y s hifts . N o is y s ec o n d

d e riva t iv es . .

A lrea d y n o is e -re d u ced p ho to g ra p h s d o n't n eed m o re .

T his w eig h t m a p c an 't d is cern fla t, v a lle y, o r ra p id

s ec tio n s .

Step 3: G a u s s ia n p y ra m id s h arp en in g u s in g s e co n d

in p u t. U nd erw a te r p h o to s d is clo s e few er p ix els .

N o rm a liz ed 0 . 5 p ixe ls are w ell-e xp o s ed . B y m a tc hin g

b rig ht n es s , th is w eig h t m in im is es o ve rex p o s u re.

eq uiv a le n t w e ig h t G a u s s ia n d is ta n ce t o t h e av era g e

n o rm alis ed ran g e is th e e xp o s ed n es s w eig h t m a p (0 .5 ).

U n d erw a t er, o b jec ts lo s e v is ib ility , m a k in g t he m h a rd to

s ee . Sa lien cy is a t hin g 's u n iq u en es s . A s alien c y m a p is

p ro d u ce d b a s e d o n ce nt er- s u rro u n d c o n tras t t o im p ro v e

p rim ary o b jec t c o n tra s t . T his t re at m en t d o es n 't affec t

m id t o n es .



Step 4: M u lt i-Sc a le F us io n im p ro v es v is ib ility in

d im ly lit en v iro n m e nt s . Th is m et ho d s e lect s th e

b es t fea t ures fro m th e in p u t im a g e, a p p lies

p erc ep t u al-b as e d w eig h t m a p s , a nd c o m b in es

t h em to p ro d uc e th e en h an c ed o u tp ut . T he fu s io n -

b as e d t ech n iq u e u s e s w h it e b ala n cin g , m e d ian

filte rin g , a n d c o n tra s t s tre tc hin g . W h ite b a la n cin g

rem o ve s co lo r ca s ts fro m in p u t im a g e s b y

e s tim a tin g fo u r w eig h t m a p s . O n e m a p m ea s u res

u n d e rw a ter-fre e p ix els ' ex p o s ed ne s s . L a p lac ian

fa v o u rs ed g e s a n d te xt ures . N ew w eig h t m a p

red u c es co lo r ca s t b y b o o s t ing red ch a nn e l va lu e.

S a lie n cy w eig h t m a p a s s es s e s p ixe l d is c ern a b ility.

B o th in p u ts a re w eig h t ed . P ix el-b y-p ix el. F us io n

c o m b in es p ict ures in t o a s in g le , m o re u s a b le

im a g e .

Step 5: P yram id rec o n s truc tio n re co n s t ru ct s

G a u s s ia n a nd L a p lac ian o u t p u ts .

Step 6: T h e re s u lt o f t he P yra m id reco ns t ru ct io n

is u s ed in th e R G B 2 Y C B C R p ro ce s s . R es u lts w ill

b e p ro d u ced in th re e d ifferen t co lo rs : ch ro m ium

re d (CR ), ch ro m iu m b lu e (C B ), a n d lu m ino s it y (Y ).

Step 7: F o r e a ch o f th e th re e o ut p u ts (Y , C B , a nd

C R ), run t h e b ic ub ic int erp o la tio n p ro ce s s

s ep ara tely. S p ec ifica lly , th e id e al area o f in teres t

w ill b e p ro d u c ed b y t he s e b icu b ic in te rp o la t io ns .

.

Step 8: A c o m p u t at io n ally int en s ive m o rp h o lo g ic al

b a s ed a p p ro a ch w a s u s e d t o a c hie ve m e an

b rig ht n es s u tilizin g th e lum in a n ce o u tp u t o f th e

b icu b ic in te rp o la tio n . O u r p rim a ry g o a l is to

re m o v e a p a tch , w h ich is ju s t a p ixe l b lo c k cen t ere d

a t Ω (x,y). Th erefo re, fo r e ac h p ix el b lo ck , w e g e t

th ree v a lue s th a t m a tch t o t he re lev an t co lo r. W e

to o k th e th ree lo w es t in t en s ity v alu es a n d s w ap p ed

th e m o u t a t th e p ro ces s e d p at ch 's ce nt er Ω (x,y).

T his p ro ce s s is ca rried o u t u n til th e w h o le p ict u re is

p ro ce s s ed . It is e q u iva len t to d o in g a

m o rp h o lo g ica l o p e ra tio n t o find th e m in im a l va lu e

fo r a p ixe l b lo c k in a g ra ys c ale p ic tu re . H e re , w e

m a y ex ecu t e th is p ro c ed u re o n th e H , S , a n d I co lo r

ch a nn e ls in d e p en d e n tly. N ex t, fo r e ac h s truc tu ra l p ie ce,

d et erm in e w h ich o f th e th ree c o lo r p la n es is t h e m in im um .

Dra w in g o n th e m e an ch a nn e l b efo re a s a s ta rt ing p o in t,

w e cre a te t he up d a ted red c o lo r p r io rity d e p th m a p p ict u re.

n o m o re th a n th ree co lo r p la ne s . A rev is ed red p rio r it y

d ep t h m ap is p ro d u ce d us in g th e m ea n c h an n el p r io r.

I is t he int en s ity c h an n el. T h is ha z e m a p he lp s

es ta b lis h th e m e a n t ra n s m is s io n m ap . DL C N N m ea n s

o u tp u t b rig h tn es s . D LC N N s ep a rat es im a g es b y m ea n .

Firs t s ub im ag e s e g m e nt h a s p ix els u p t o m ea n , s ec o n d

ab o ve m e an . Tw o n o n o v erlap p ing ra n g es w ere

co n s tru cte d . Sp e cifyin g la yers e q u aliz ed tw o s u b la yers .

DL C N N s ta n d a rd co u ld m a in ta in ac tu a l b rig h t ne s s w h en

p ictu re in p u t fea tu re s w ere aro u n d th eir m ea n . In th is

tec h niq u e , inp ut m ea n p res e nt s t h e m ea n in t en s ity o f

ev ery p ixe l fro m 0 to M -1 . F irs t fe a tu re is ze ro t o m e an ,

s eco nd m ea n + 1 to M -1 . B o th e q u a liz ed im ag es a re

b len d ed a ft er ap p lying D LC N N to ea ch s u b im a g e

s ep a ra t ely. DL C N N in crea s es co n s u m er e le ct ro n ics inp ut

p ictu re a n d b rig h t ne s s . D LC N N s p e cific a tio n im p ro ve s

co n tra s t to p res e rv e im a g e s ' m ea n b rig h t ne s s

m a th em a t ic a lly. It e n ha n ce s u s e r elec tric al d ev ice s .

As s u m e p ictu re X 's m e an is X m :

𝑋 𝑚 {𝑋 0 ,𝑋 1 ,… … ,𝑋 𝑙 − 1 }

O n th e b a s is o f m e an , t h e d ec o m p o s it io n o f im ag e is

d o n e in to 2 s u b im a g es i.e. 𝑋 𝐿 a n d 𝑋 𝑈

In th is , 𝑋 𝐿 c o n s is ts o f:

(𝑋 0, 𝑋 1 ,……,𝑋 𝑚 ) …. (4)

A n d co ns is t o f:

(𝑋 𝑚 +1 ,+2 ,…… ,𝑋 𝐿 −1) …. (5)

Sa m e a s D LC N N , in th is , th e C D F is u tilize d in th e

fo rm o f tran s fo rm fu n ct io n a s :

∈ {𝑋 0 ,1 ,… … ,𝑋 𝑙 − 1 } … . (6 )

A nd

(𝑥 ) = 𝑋 𝑚 + 1 + (𝑋 𝐿 − 1 − 𝑋 𝑚 + 1 )(𝑥 ) … (7 )

B a s ed o n t he eq u a tio n , t he eq u a lis a t io n o f th e d ivid e d

s u b p ic tu re s is d o n e in d ep en d en t ly , a n d t h e re s ult in g

s u b im a g e s ' c o m p o s it io n co n t ain s t h e D L CN N

s p ec ific at io n o u tp ut , i.e. , th e H is to g ra m s p ec ifica t io n

o u tp u t im a g e Y .

𝑌 = 𝑓 𝐿 (𝑋 𝐿 ) ∪ ( )
A d a p tiv e his t o g ra m eq ua lis a tio n elim ina t es no is e in

h o m o g e n eo u s area s . M E F a p p lies ev ery im ag e p ix el.

R a yleig h , un ifo rm , a n d ex p o n en tia l d is tr ib u tio n s c rea t e

tran s fo rm fu n ct io n s . R a yleig h im p ro ve s un d e rw a te r

p h o to g ra p h s . T h is alg o rith m w o rk s o n ly o n tin y im a g e s .

B iline a r int erp o la tio n red uc es t ile b o u nd aries . C o n tra s t



p rev en ts h o m o g en eo us zo n e o ve rs a tu rat io n . M E F

ca n im p ro v e res u lts w it h o u t c lip p in g (co n t ra s t

fa cto r). T h is

cu t s n et w o rk d e p th b y 1 0 . 1 0 - la ye rs .

R ed uc ing d ep t h im p ro v es n e tw o rk

p e rfo rm an c e. C o m b inin g D L CN N o u tp u t

w ith CB a n d C R c re at es a

co nt ra s t-en h an c ed R G B im a g e.

Figure 3:F lo w ch a rt o f D LC N N

Input image : Inp ut im ag e is th e u n clea r im a g e th a t h a s

to b e ed ite d u s in g C N N m e th o d .

Conversion of RGB to YCbCr: F o r an in p u t im ag e C N N

m et h o d ca n n o t b e a p p lie d . So , th e im a g e is c o n ve rt ed

int o Y C b C r im a g e.

DL-CNN: DL -C N N h a s 4 lay ers . B y u s ing th es e la yers t he

fea tu re s o f th e im ag e is ex tra cte d a n d th e n o is e is

id en tif ied a n d re m o v ed .

Bicubic Interpolation: B icu b ic int erp o la tio n is us e d t o

m a k e th e c o -o rd in at es o f th e im a g e e q u a l a n d th e p ix els

o f th e im a g e a re d ivid e d in to cu b es o f eq u a l p arts .

Conversion of YCbCr to RGB: Th e rec eive d im a g e is in

Y C b C r fo rm a t. H e n ce t he im a g e is co nv erte d to R G B .

Output image: B y a p p lyin g th e a b o v e m eth o d s w e ca n

a ch iev ea clea r o u t p u t im ag e.

VI.EXPERIMENTAL RESULTS

MODIFIED LAS VEGAS ALGORITHM RESULT:

Fig 4 : Input Image Fig 5 : Output Image

Th e in p u t p ic tu re is s h o w n in F ig u re 4 , a n d th e res u lt

Input

RGB

DL-

YCbCr

OUT



im a g e is s h o w n in F ig ure 5 . F ig u re 5 s h o w s an

im p ro ve m en t in p ict ure q u a lit y co m p a red t o F ig ure

4 . In t erm s o f q u a lity , F ig u re 5 o ut s h in e s F ig u re 4 .

T o e nh a n ce th e q u a lit y o f th e o u tp u t p ictu re, w e

p ro p o s e a n ew a im , w h ic h w ill b e ela b o rat ed u p o n

in t h e p ro p o s ed s y s tem o ut co m es .



DL-CNN ALGORITHM RESULT: F ig 8 s h o w s th a t, Im a g e C o n tras t is E n ha n ce d

C o m p are t o fig 6 . Th is Im a g e E n h an c em e nt is In c rea s e

t he v is ib ilit y o f th e im a g e a n d th e int en s ity o f th e p ixe lis

m o d ifie d us in g D L CN N .

Parameters Modified Las
Vegas Algorithm

DL-CNN
Algorithm

MS E 241 1.425

PS NR 24 .3 3 41.53

ENT RO P Y 6.19 10.20

Table1: comparison table

Fro m t he ab o ve ta b le w e c a n c o n clu d e t h at

b a s ed o n th e M SE a n d P S N R va lu e w e ca n s a y t he

q u a lit y o f t h e im a g e is m o re



Fig 6: Input Image

Fig 7: MEF Image

Fig 8: Output Image

.

In o rd er t o fin d o u t m e an s q u a re e rro r w e w ill

u s e b e lo w fo rm u la

MSE = ( ∑ [I1(i,j)-I2(i,j)]2/(m*n)) … … … … … … .(9 )

W h ere I1 ,I2 = in p u t a n d o u tp ut im a g e s

In o rd er t o fin d p ea k s ig n a l n o is e rat io w e

w ill u s eb elo w fo rm u la

PSNR = 10log10(R2/MSE) … … … … … … (1 0 )

W h ere R = 2 5 5

E xp res s e d a s D b

VII.CONCLUSION
Th is re s ea rc h p ro vid e s a crit er io n fo r t o n e-

n a tu re p ic tu re s . T he re s ea rc h id en t if ies es tim a t o rs

t h at c ap tu re p e rc ep t ua lly s ig n ifica n t c o m p o ne n ts .

C o m b inin g ch a ra ct er is t ics lin e arly e n s ures

t ra n s p a re nc y an d u n ive rs a lit y.

Im a g e-cla rif ic a tio n w as in t ro d u c ed . So lu tio n

im p ro v es w h ite - b a la n cin g a n d fa k es va rio u s

u n d e rex p o s u res . O u r m e th o d en h an c es d eg rad ed

p ho to s w ith o u t a d d in g d ev ic es o r d a ta . O u r

t ec hn iq u e im p ro ve s d im a n d fo g g y p h o t o s . It

in crea s es p h o t o fea tu re m a tch in g .

T h is s t u d y re ve a le d a n in n o v a tive m et h o d to en h an c e

t h e c la r it y o f ea ch im a g e . T he s u g g e s te d s o lu tio n

h a s tw o p a rts : a b ett er w ay to b a la n ce th e w h ite co lo r

a n d a fa k e w a y to co m b in e n um ero us u n d e rex p o s e d

im a g e s . O u r ap p ro a c h m ak e s p ictu res th a t h a v e

b een b a d in d ive rs e w a ys s eem b e tt er, an d it d o e s n't

n e ed an y a d d itio n a l t ec hn o lo g y o r d a ta o t h er th a n t h e

o rig in al im a g e . A d d itio n a lly , th e p ro p o s e d im p ro v es

c erta in im a g e s s h o t in lo w lig h t o r in fo g g y co n d it io ns ,

a ll o f w h ic h a re ta k en in n at u ra l s et tin g s . I t m a y b e

u s e fu l t o in crea s e th e a m o u n t o f m a tc h ed p a irs in

p ic tu re lo ca l fe at u re p o in t m at ch in g .

FUTURE SCOPE:

T h e p ro p o s ed a p p ro a ch c o n s is t s o f tw o

c o m p o ne n ts : a n im p ro ve d m e th o d fo r b a la nc ing th e

w h ite c o lo r a n d a te ch n iq u e fo r a s s em b lin g

s im u la te d im a g e s w ith s ev era l in s ta n ce s o f

u n d e rex p o s u re. O u r m et h o d e nh a n ce s th e vis u a l

q ua lity o f u nd erw a te r p h o t o g ra p h s w it h d ifferen t

le ve ls o f d et erio ra tio n w ith o u t t h e n ee d fo r

s p ecia lize d t ech n o lo g y o r a n y d a t a o t he r th a n th e

o rig in al im a g e. O u r re s ea rc h s h o w s th a t o u r m e th o d

c o u ld b e a b le to m a k e s o m e im a g es ta k e n in lo w

lig h t o r na t ura l lig h t s ee m b et te r. O t he r u s es in clu d e

in crea s in g t h e nu m b er o f m a tch e d p airs a n d m a k in g

it ea s ier to m a tc h lo ca l fea tu re p o int s in u n d erw a t er

p ho to s . O ur s o lut io n w o rk s w e ll in m o s t

c ircu m s t a nc es , h o w e ve r it c o u ld o ve rco rre ct t he red



c h an n el in p ho to g ra p h s w it h p a rticu la rly b a d

lig h tin g . T h e a im o f o u r ne xt res ea rch is to p ers is t

in ex a m inin g p o s s ib le rem e d ies fo r t his co ns t ra in t.

O u r fu t ure s co p e is fo cu s ed o n p at ch

s e g m e nt a tio n fu s io n. An im a g e is firs t s p lit int o

s m all p a t ch es a n d t h e s e g m en t at io n is p erfo rm e d

o n e ac h p at ch . H ere, s ha rp en in g m et ho d is u s ed t o

s m o o th th e ed g e s to in cre a s e t h e v is ib ilit y o f t h e

u n d e rw a ter im a g e in w id e ra n g e. O u r fu tu re s co p e

is fo cu s e d o n p at ch s eg m en ta tio n .
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